Norepinephrine attenuates hypoxia-inhibited thyrotropin-releasing hormone release in median eminence and paraventricular nucleus of rat hypothalamus.
نویسندگان
چکیده
OBJECTIVE We have previously found that chronic hypoxia inhibited thyrotropin-releasing hormone (TRH) mRNA expression in rat paraventricular nucleus (PVN). This study presented the effects of hypoxia on TRH secretion in rat hypothalamus, and the norepinephrine (NE) involvement in the modulation of TRH secretion during acute hypoxia exposure. SETTING AND DESIGN Hypoxia was simulated at altitudes of 5 km (10.8% O2) or 7 km (8.2% O2) in a ventilated hypobaric chamber, and control group was set at local altitude of 2.3 km (15.8% O2). The duration of hypoxia exposure was designed acutely and chronically for 0.5, 2, 24 h, 5, 10, and 30 d, respectively. TRH levels were measured by specific radioimmunoassay. RESULTS The results showed that hypoxia of 5 km or 7 km significantly enhanced TRH levels of the ME and PVN, and reduced serum T3 levels in most hypoxia-exposed groups. Intraventricular injection (icv) of NE (4 nmol/L) induced a decrease in TRH levels in the median eminence (ME) and PVN, and an increased serum T3 levels following hypoxia of 7 km exposure for 2 h, compared with icv saline control, indicating TRH release increased. The stimulating effect of NE on the TRH secretion was abolished by icv antagonist of adrenergic alpha2-receptor, yohimbine (40 nmol/L). CONCLUSIONS We conclude that acute and chronic hypoxia exposure produces an inhibition of hypothalamic TRH secretion from the ME and PVN. Central adrenergic system may play a stimulating role through alpha2-receptor in the acute hypoxia-modulating TRH release from rat hypothalamus.
منابع مشابه
Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2.
TRH and CRH are secreted into the hypophysial portal circulation by hypophysiotropic neurons located in parvicellular subdivisions of the hypothalamic paraventricular nucleus (PVH). Recently these anatomical compartments of the PVH have been shown to contain large numbers of glutamatergic neurons expressing type 2 vesicular glutamate transporter (VGLUT2). In this report we presented dual-label ...
متن کاملThyrotropin releasing hormone (TRH): its widespread distribution in discrete hypothalamic nuclei and areas in rat brain.
The precise distribution of thyrotropin releasing hormone (TRH) in 23 discrete brain nuclei and areas of Wistar strain male rats was determined by specific radioimmunoassay. TRH was detected in most of these areas. The highest concentration was found in the median eminence (27.52 +/- 2.84 ng/mg protein). The arcuate nucleus (4.92 +/- 0.58 ng/mg protein), dorsomedial nucleus (4.77 +/- 0.59 ng/mg...
متن کاملRegulation of hypothalamic prohormone convertases 1 and 2 and effects on processing of prothyrotropin-releasing hormone.
Regulation of energy balance by leptin involves regulation of several neuropeptides, including thyrotropin-releasing hormone (TRH). Synthesized from a larger inactive precursor, its maturation requires proteolytic cleavage by prohormone convertases 1 and 2 (PC1 and PC2). Since this maturation in response to leptin requires prohormone processing, we hypothesized that leptin might regulate hypoth...
متن کاملSomatostatin inhibits release of thyrotropin releasing factor from organ cultures of rat hypothalamus.
Somatostatin in concentrations of 10(-6) to 10(-8) M inhibited basal release of thyrotropin releasing factor in organ culture of rat hypothalamus. Norepinephrine in doses of 10(-4)--10(-6) M induced release of thyrotropin releasing factor which increased progressively with time and was temperature and dose dependent. This enhanced thyrotropin-releasing-factor release was inhibited by somatostat...
متن کاملDistribution of beacon immunoreactivity in the rat brain.
Beacon is a novel peptide isolated from the hypothalamus of Israeli sand rat. In the present study, we determined the distribution of beacon in the rat brain using immunohistochemical approach with a polyclonal antiserum directed against the synthetic C-terminal peptide fragment (47-73). The hypothalamus represented the major site of beacon-immunoreactive (IR) cell bodies that were concentrated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro endocrinology letters
دوره 26 1 شماره
صفحات -
تاریخ انتشار 2005